[BalticOI 2008]黑手党 - 洛谷

发现就是考虑对多少个点打标记使得 $S \to T$ 的任意一条路径都是有标记的点。

本质就是割掉若干个点使得 $S,T$ 不连通。

每个点有权值也是没有关系的,所以直接拆点跑最小割就行了。

注意: 如果要输出方案的话,我们考虑遍历 $S$ 可以到达的点集,对于每个点打标记,如果说存在一条边使得两边的点是在不同的集合,那么这条边就是被割掉的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include <bits/stdc++.h>
using namespace std;
namespace Legendgod {
namespace Read {
// #define Fread
#ifdef Fread
const int Siz = (1 << 21) + 5;
char *iS, *iT, buf[Siz];
#define gc() ( iS == iT ? (iT = (iS = buf) + fread(buf, 1, Siz, stdin), iS == iT ? EOF : *iS ++) : *iS ++ )
#define getchar gc
#endif
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
template <typename T, typename...Args>
void r1(T &x, Args&...arg) {
r1(x), r1(arg...);
}
#undef getchar
}

using namespace Read;

const int maxn = 2e5 + 5;
int n, m, S, T;
int head[maxn], cnt(1), head1[maxn];
struct Edge {
int u, to, next, w;
}edg[maxn << 1];

void add1(int u,int v,int w) {
edg[++ cnt] = (Edge) {u, v, head[u], w}, head[u] = cnt;
}

void add(int u,int v,int w) {
add1(u, v, w), add1(v, u, 0);
}

int d[maxn], vis[maxn];
int bfs() {
for(int i = 1; i <= 2 * n; ++ i) d[i] = -1;
static queue<int> q; while(!q.empty()) q.pop();
q.push(S), d[S] = 0;
while(!q.empty()) {
int u = q.front(); q.pop();
if(u == T) return 1;
for(int i = head[u];i;i = edg[i].next) {
int to = edg[i].to, w = edg[i].w;
if(d[to] == - 1 && w) q.push(to), d[to] = d[u] + 1;
}
}
return d[T] != -1;
}

int dfs(int p,int sum) {
if(p == T) return sum;
int res(sum);
for(int &i = head1[p];i;i = edg[i].next) {
int to = edg[i].to, w = edg[i].w;
if(w > 0 && d[to] == d[p] + 1) {
int s = dfs(to, min(res, w));
if(s) edg[i].w -= s, edg[i ^ 1].w += s, res -= s;
if(!res) return sum;
}
}
if(res == sum) d[p] = 0;
return sum - res;
}
const int inf = 0x3f3f3f3f;
int mxflow() {
int ans(0);
while(bfs()) {
for(int i = 1; i <= 2 * n; ++ i) head1[i] = head[i];
ans += dfs(S, inf);
}
return ans;
}

void dfs(int p) {
vis[p] = 1;
for(int i = head[p];i;i = edg[i].next) {
int to = edg[i].to;
if(edg[i].w > 0 && !vis[to]) dfs(to);
}
}

signed main() {
int i, j;
r1(n, m, S, T);
T += n;
for(i = 1; i <= n; ++ i) {
int c; r1(c);
add(i, i + n, c);
}
for(i = 1; i <= m; ++ i) {
int x, y;
r1(x, y);
add(x + n, y, inf), add(y + n, x, inf);
}
int ans = mxflow();
vector<int> vc;
dfs(S);
for(i = 2; i <= cnt; i += 2) {
int v = edg[i].to, u = edg[i ^ 1].to;
if(vis[u] && !vis[v]) vc.emplace_back(u);
}
sort(vc.begin(), vc.end());
for(const int& v : vc) printf("%d ", v);
puts("");
// printf("%d\n", ans);
return 0;
}

}


signed main() { return Legendgod::main(), 0; }//